
CSE517A Machine Learning Spring 2022

Lecture 10: Gaussian Processes
Instructor: Quan Nguyen

Reading: fcml 8-8.2.4, 8.2.7 (gp Regression); gpml 2.1 (Weight-space View), 2.2 (Function-space View)

1 Multivariate Gaussian distributions

We first review the definition and properties of Gaussian distribution:

A Gaussian random variable x ∼ N (µ,Σ), where µ is the mean and Σ is the co-variance matrix, has the
following probability density function:

p(x;µ,Σ) =
1√

(2π)d|Σ|
e−

1
2 ((x−µ)⊤Σ−1(x−µ))

where |Σ| is the determinant of Σ.

The Gaussian distribution occurs very often in real world data. This is probably because of the Central
Limit Theorem (CLT). The CLT states that, given some conditions, the arithmetic mean of m > 0 samples
is approximately normal distributed - independent of the sample distribution.

(1) Normalization: ∫
x

p(x;µ,Σ)dx = 1

(2) Summation:

If y ∼ N (µ,Σ) and y′ ∼ N (µ′,Σ′), then

y + y′ ∼ N (µ+ µ′,Σ+ Σ′)

Now, let y be Gaussian random vector y =

[
yA

yB

]
, with mean µ =

[
µA

µB

]
and co-variance matrix Σ =[

ΣAA ΣAB

ΣBA ΣBB

]
. We have the following properties:

(3) Marginalization:

The marginal distributions p(yA) =
∫
yB

p(yA,yB ;µ,Σ)dyB and p(yB) =
∫
yA

p(yA,yB ;µ,Σ)dyA are Gaus-
sian:

yA ∼ N (µA,ΣAA)

yB ∼ N (µB ,ΣBB)

(4) Conditioning:

The conditional distribution of yA on yB

p(yA | yB) =
p(yA,yB ;µ,Σ)∫

yA
p(yA,yB ;µ,Σ)dyA

1



2

is also Gaussian:
yA | yB ∼ N

(
µA +ΣABΣ

−1
BB(yB − µB),ΣAA − ΣABΣ

−1
BBΣBA

)
This property will be useful in deriving Gaussian Process predictions.

2 Introduction

Recap: Linear regression model
y = f(x) + ε = w⊤x+ ε

where we assume zero-mean i.i.d. Gaussian noise:

ε ∼ N (0, σ2
n).

So, the predictive distribution given the model parameters is Gaussian:

p(y | x,w) = N (w⊤x, σ2
n)

We can make two extensions for the linear regression model:

(1) Regularization (Ridge Regression)

We model w as a random variable and assume a prior distribution over parameters p(w). Then, the posterior
over parameters is given by:

p(w | X,y) =
p(y | X,w)p(w)

p(y | X)
=

likelihood× prior

marginal likelihood

For ridge regression specifically, we assume a Gaussian prior over parameters w:

p(w) = N (0, σ2
pI)

(2) Feature Space Transformation

y = f(x) + ε = w⊤ϕ(x) + ε

Using the kernel trick leads us to kernel ridge regression:

y = f(x) + ε =

n∑
i=1

αik(xi,x) + ε

Notation: We will call X input space and ϕ(X ) feature space. Hence, feature space refers to the new
transformed feature space explicitly defined by ϕ or implicitly through k(., .).

Putting (1) and (2) Together

Instead of thinking about regularization and feature space transformations separately, we can derive a model
directly by looking at the predictive distribution:

p(y∗ | x∗, X,y) =

∫
w

p(y∗ | x∗,w) p(w | X,y dw

This is essentially a (typically infinite) sum over the predictive distributions (cf. Eq. (2) but in feature space)
using all possible model parameters w weighted by the probability of the respective parameter (posterior

1http://www.gaussianprocess.org/gpml/chapters/RW2.pdf

http://www.gaussianprocess.org/gpml/chapters/RW2.pdf


3

over parameters; cf. Eq. (2), but again in feature space).

Unexpectedly, Eq. (2) is actually tractable if p(y∗ | x∗,w) and p(w | X,y) are both Gaussian, which can be
achieved by using our Gaussian noise model in Eq. (2), and a Gaussian likelihood and a Gaussian prior in
the feature space equivalent of Eq. (2). In that case, we have (without derivation1):

p(y∗ | x∗, X,y︸︷︷︸
=D

) = N
(
µy∗|D,Σy∗|D

)
where

µy∗|D = K⊤
∗ (K + σ2

nI)
−1y (1)

Σy∗|D = K∗∗ −K⊤
∗ (K + σ2

nI)
−1K∗ (2)

with

K = k(X,X)

K∗ = k(X,x∗)

K∗∗ = k(x∗,x∗)

X is the training set and x∗ is the input test point. If there are multiple test inputsX∗, thenK∗∗ = k(X∗, X∗).
This is a Gaussian Process regression model we can use for machine learning. It extends the kernel
ridge regression model with an entire predictive distribution giving us a principled way to model predictive
uncertainty !

Homework : verify that using Eq.(1) for predictions is exactly kernel ridge regression as derived in Lecture 9.
hint: use the fact that the mean of a Gaussian distribution is also it’s mode.

A different (maybe nicer) way to derive Gaussian process regression is to think about modeling f directly
(instead of y)! This is allso referred to as the function-space view.

3 Gaussian Processes

Problem: f is a (infinite-dimensional) function, but multivariate Gaussians are finite-dimensional.

Solution: Let’s extend multivariate Gaussians to infinite dimensions!

Definition 3.1. Gaussian Process (gp):

A gp is a (potentially infinite) collection of random variables (rvs) such that the joint distribution of every
finite subset of rvs is multivariate Gaussian:

f ∼ GP(µ, k)

where µ(x) is the mean function and k(x,x′) is the co-variance function.

4 Gaussian Process Regression (GPR)

Now, in order to use gps for machine learning we need a prediction model. So, let’s model the predictive
distribution p(f∗ | x∗, D) following the Bayesian approach using a gp prior:

f | x ∼ GP(µ(x), k(x,x))

and condition it on the training data D.

1For a derivation of Eqs. (2-2), we refer to gpml 2.1.1-2.1.2 (weight-space view).
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4.1 Noise-free Observations

For simplicity let’s start with noise free observations: D = {X, f}. Note, we use f to denote the vector of
noise-free training observations.

For D, we have
p(f | X) = N (µ(X), k(X,X)).

For (x∗, f∗), where f∗ denotes the noise-free test target variable, we have

p(f∗ | x∗) = N (µ(x∗), k(x∗,x∗)).

Now, let’s model the joint distribution of f∗ and f :

p

([
f | X
f∗ | x∗

]
,

)
= N

([
µ(X)
µ(x∗)

]
,

[
k(X,X) k(X,x∗)
k(x∗, X) k(x∗,x∗)

])
Conditioning on f | X gives us the gp posterior:

p(f∗ | x∗, X, f) = N
(
µ(x∗) + k(x∗, X)k(X,X)−1(f − µ(X)), k(x∗,x∗)− k(x∗, X)k(X,X)−1k(X,x∗)

)
Now, we can use the mean for predictions (predictive mean):

f̄∗ = µ(x∗) + k(x∗, X)k(X,X)−1(f − µ(X))

= µ(x∗) +K⊤
∗ K−1(f − µ(X))︸ ︷︷ ︸
=
∑n

i=1 αik(x∗,xi)

(3)

where αi = K−1(f − µ(X)). The predictive variance

cov(f∗) = K∗∗ −K⊤
∗ K−1K∗ (4)

gives us an idea of how (un)certain our predictions are.

4.2 Noisy Observations

For noisy observations we use D = {X,y}, where y = f(X) + ε = f + ε. If we assume the noise to be
independent and zero-mean Gaussian ε ∼ N (0, σ2

n), we have p(y | f) = N (f , σ2
nI).

2 Now,

p(y | X) = p(f + ε | X) = N (µf |X + µε,Σf |X +Σε) = N (µ(X), k(X,X) + σ2
nI)

and we get:

p

([
y | X
f∗ | x∗

])
= N

([
µ(X)
µ(x∗)

]
,

[
k(X,X) + σ2

nI k(X,x∗)
k(x∗, X) k(x∗,x∗)

])
.

In the same way as before, conditioning on y | X leads to the following predictive mean and predictive
variance for the gp posterior p(f∗ | x∗, X,y):

f̄∗ = µ(x∗) + k(x∗, X)(k(X,X) + σ2
nI)

−1(y − µ(X)) (5)

cov(f∗) = k(x∗,x∗)− k(x∗, X)(k(X,X) + σ2
nI)

−1k(X,x∗) (6)

So, for noisy observations, we essentially added σ2
nI to k(X,X).

2If we model the dependency of y and f differently (as for instance for classification problems) or assume non-Gaussian
noise, the gp posterior is no longer Gaussian and there is most likely no closed form solution for predictions. Approximate
inference techniques can be used to overcome this. Covered in cse515t or fcml 8.3 and 8.5.
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4.3 Noisy Observations ans Noisy Predictions

For noisy predictions modeled by p(y∗ | x∗, X,y) we have to add another σ2
n to cov(f∗). Derivation omitted.

Again, for predictions we can use the predictive mean f̄∗ and additionally we get the predictive variance as
a measure of confidence/(un)certainty about the point prediction. This predictive variance is now larger
than for noise-free predictions. Note that the noisy prediction is the same as the noise-free prediction. Both
should make sense intuitively.

For all three cases, if we have multiple test cases, i.e., X∗ is a matrix, we also get the co-variance between
their predictions Σ∗.

Note: Magic of gps

Even though we model the Gaussian process as a distribution over functions (infinite-dimensional vectors),
we only ever evaluate it on finite dimensional subsets of training and test points. So, effectively we only ever
deal with multi-variate Gaussian distributions.

5 GPR in Practice

5.1 Practical Implementation

For a practical implementation of Gaussian process regression (gpr), we need a couple of ingredients:

• let’s use a zero-mean gp → re-scale yi’s to have zero mean

• use the Cholesky decomposition of K + σ2
nI = LL⊤ to compute the inverse more efficiently (L is a

lower triangular matrix and can be computed in O(n
3

6 ))

Algorithm:

Figure 1: From gmpl Algorithm 2.1

The equation in line 3 are two systems of linear equations with triangular matrices, which can both be solved

in O(n
2

2 ) using forward substitution resp. backward substitution.

5.2 Hyperparameter Learning and Marginal Likelihood

Even though gpr is a non-parametric model, the covariance function K has parameters. Those parameters
are so-called hyperparameters and they need to be learned from the training data. To see this consider the
rbf kernel (cf. Lectures 8-9) with different values for its length-scale hyperparameter :
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Figure 2: Illustration of gp priors using an rbf kernel with length-scale parameter ℓ (cf. kernel width
parameter) decreasing from left to right.

Let θ be the vector of all parameters of K, then K = Kθ and we can learn θ by maximizing the marginal
likelihood P (y | X,θ), cf. equations (2.28)-(2.30) in gpml Chapter 2 (p. 19).

For standard gpr the marginal likelihood (actually we use the log marginal likelihood) can be derived analyt-
ically. It turns out that for a Gaussian prior and Gaussian likelihood, the marginal likelihood is also Gaussian
with mean µ and covariance K + σ2I. Now, use Eq. (1) for its derivation (derive as homework). Then,
we can compute its derivatives (derive as homework) and use any out-of-the-box solver such as (stochastic)
gradient descent, or Rasmussen’s minimize used in the gmpl MATLAB toolbox (caution: minimize the
negative log marginal likelihood). Note that the marginal likelihood is not convex in its parameters and
hence you will most likely get a local minima/maxima. To make this procedure more robust, you can
rerun your optimization algorithm multiple times with different initialization and pick the lowest/highest
return value.

5.3 Covariance Functions (Kernels) - The Heart of the GP Model

gps gain a lot of their predictive power by selecting the right covaraince/kernel function. Selecting the
covaraince function is the model selection process in the gp learning phase. There are three different ways
to come up with a good covariance function (cf. gpml Chapter 53):

• Expert knowledge (awesome to have – difficult to get)

• Bayesian model selection (more possibly analytically intractable integrals!!)

• Cross-validation (time consuming – but simple to implement)

Kernels used in Practice

Next to the ones already discussed in our lectures on kernel methods, there are many other covariance
functions/kernels we can use in practice, see gpml 4.2 and https://www.cs.toronto.edu/~duvenaud/

cookbook/ for an overview.

A popular and powerful covariance function to keep in mind is the squared exponential with different
length scales for each input dimension:

k(x,x′) = σ2
f exp

(
−1

2
(x− x′)TM(x− x′)

)
+ σ2

nδx,x′ ,

with M = diag(ℓ)−2, where σ2
f is the signal variance, ℓ is a vector of length-scale parameters (one for each

input dimension), and σ2
n is the noise variance. This kernel is also called ard kernel (for automatic relevance

determination).

3http://www.gaussianprocess.org/gpml/chapters/RW5.pdf

https://www.cs.toronto.edu/~duvenaud/cookbook/
https://www.cs.toronto.edu/~duvenaud/cookbook/
http://www.gaussianprocess.org/gpml/chapters/RW5.pdf


7

Figure 3: Illustration of gp priors using an ard kernel with length-scale parameters ℓ1 and ℓ2.

Another trick is to build expressive composite covariance functions (mostly sums and products), such
as in the Mauna Loa regression example (gpml 5.4.3) or what we did in our work on traffic frequency
prediction.4

6 Summary

• gps are an elegant and powerful ML method - they are truly Bayesian

• we get a measure of (un)certainty for the predictions for free

• gps work very well for regression problems with small to medium sized training data

• we need to learn the kernel hyperparmeters and choose a good kernel/covariance function using the
training data

• test points having more similar features with training points get more certain predictions (see Figure 4)

Figure 4: Example of gp regression: gp prior (left) and gp posterior (right). The mean function (predictive
mean) is shown in red and the uncertainty (predictive variance) is shown as shaded gray area (two standard
deviations).

4https://www.researchgate.net/publication/220765646_Stacked_Gaussian_Process_Learning

https://www.researchgate.net/publication/220765646_Stacked_Gaussian_Process_Learning
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Extensions:

• run time O(n3) → matrix inversion (gets slow when n is large) ⇒ use sparse gps for large n

• gps are a little harder to realize for classification (we use the logistic likelihood which is non-Gaussian)

• we can model non-Gaussian likelihoods for regression, e.g., for count data (Poisson likelihood)

• non-Gaussian likelihoods or priors require approximate inference techniques


