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point-wise predictions

probability distributions as predictions
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. o . nl .
Consider multivariate normal random variable y = [yl with
2
M1 . . ) 2
mean y = and covariance matrix X =
2. 2o 2,

p(P)) =~ () e 52))
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...BECAUSE GAUSSIANITY IS PRESERVED IN MANY OPERATIONS

. Vi B Pl (21 20
Py, Y2) =P ( _yzl ) =N ( [ﬂzl’ lZﬂ Z22] )

Marginalization: p(y,) = J P(Vis Vo) dy, = N(py, 241)
Y2

* When we don't care about the nuisance parameter y,
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...BECAUSE GAUSSIANITY IS PRESERVED IN MANY OPERATIONS
Vi il 1211 21
o =2 ([af) =~ (- [52 52))

Summation: p(yl) = N(//tl, Z11)

p(yy) = N(py, X))

Py +y2) = N(uy + py, X1 + Zpp)
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...BECAUSE GAUSSIANITY IS PRESERVED IN MANY OPERATIONS

_ V1 B il (20 Zin
Py, Y) =p ([yj) - N( _/42]’ [221 27 )

Conditioning: p(y; | y,) = N(uj, 27,)

pi=p 2 25 (0 — i)
=2 -2 2, I

Applies to any multivariate Gaussian
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THE (KERNEL) REGRESSION MODEL

y =f(x) + €& =wlx+ g where ¢ ~ N(O,a,%)
Learning w: wTx: = K(x+, X) K'(X,X) y
What is the prediction for label y. of test point x«?
PV | x5, W) = N(WTxx, 0,%) =N (K(x*,X) KX, X)y, 6,%)

Since label y. is what we really care about, weight vector w is

a nuisance parameter.
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MARGINALIZING OVER WEIGHT VECTORS

py|x,D)=1 pQy,w|x,D) dw = J ply | x,w) p(w | D) dw

YW w

MLE: max p(D | w) i highest likelihood

MAP: max p(w | D)

highest
posterior

xpD|w)pw) .

low posterior
but possible

Others: low p(D | w)

or low p(w | D) S T B S m—
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SIDE-STEPPING THE WEIGHT VECTORS

Training data D = {(x;,y;)}'_, and test point x

N1
Y2
p | Xg, X2, e Xy, X | = N(u, 2)
Yn
Vx

Conditioning on the training data D:

Py« | xx, D) = N(,U*,U*z)
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CLOSED-FORM PREDICTIONS

Given training set D = (X, y) and test point xx:

p(y* | X*aD) — N(//t*a 63)1

where

e = K(x+, X) K'(X, X) y

62 = K(x+, x+) — K(x+, X) K~Y(X,X) K" (x+, X)
K(x, x) is the covariance between x and X.

> PSD.
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INTERPRETING THE PREDICTIONS

p(ys | x«, D) = N, 67),
1 = K(x+, X) K~'(X, X) y: kernel regression!!
62 = K(x=, xx) — K(x+, X) K~1(X, X) K"(x+, X)
> 67 < K(x+, X#): uncertainty never increases
> Uncertainty quantification

x+ can be anything

> Distribution over functions
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GP IN ACTION

2
, [[x — x|
RBF kernel: K(x, x") = exp 5
; point-wise spredictions : | | probat?ility distributsions as predidions
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GP IN ACTION

RBF kernel: K(x, x) = exp

3 samples

/112
[x = x|

2

1000 samples
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NOISY OBSERVATIONS

Each observation y follows a slightly different normal:

p(y | x) = N (y; u(x), K(x, x) + o7,

K(X,X) = K(X,X)+ 621
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NOISY OBSERVATIONS

Each observation y follows a slightly different normal:

POy | x) =N (y:u(0), K(x,x) +0;)  K(X,X) = KX, X) + 0,1

prior GP posterior GP
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FORMAL DEFINITION OF A GP

Definition: A GP is a (potentially infinite) collection of RVs
such that the joint distribution of every finite subset of RVs is

multivariate Gaussian.
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UNCORRELATED VARIABLES
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CORRELATED VARIABLES
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FROM 2D TO HIGHER/INFINITE DIMENSIONS

—> Tying a knot
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RBF KERNEL
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RBF KERNEL

K(x,x) = exp

/112
[x = x|
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MATERN 3/2 KERNEL
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PERIODIC KERNEL

K(x,x) = exp (—2 2 sinz(n(xi — x{)))




PERIODIC KERNEL
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MATERN 5/2 KERNEL
K(x,x) = (1 +/3d + 5d2> exp <—\/§d>
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GP HYPERPARAMETERS

K(x,x) = 67 eXp (

/112
[x = x|

20

)
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GP HYPERPARAMETERS

K(x, x) = 6 exp ( Ix ;;W)

Length scale £ controls how “wiggly” the function is

Output scale 62 controls the range of the function
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LENGTH SCALE CONTROLS WIGGLINESS

M2
[x = x|

K(x,x) = o%exp < 7

)
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LENGTH SCALE CONTROLS WIGGLINESS

K(x,X) = o2 exp ( || x ;fX/“2>

(=03

T 95% CI

.......................

.............................................................

.................................................................................................................................................................
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LENGTH SCALE CONTROLS WIGGLINESS

M2
[x = x|

K(x,x) = o%exp (

2C
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OUTPUT SCALE CONTROLS RANGE
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OUTPUT SCALE CONTROLS RANGE

K(x,x) = o%exp (

M2
[x = x|

2C
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OUTPUT SCALE CONTROLS RANGE
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FINDING THE BEST HYPERPARAMETERS

Given the hyperparameter vector 8, consider the negative

log marginal likelihood:

1 1 N
—logp(y | @) = 5 log det K(X, X) + EyT KX, X)y+ B} log(2r)

> Closed-form gradient w.r.t. elements in 6.
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ONE LENGTH SCALE FOR EACH DIMENSION

Automatic relevance determination (ARD) covariance
function

— )2
K(X, X/) — 02 exXp (_% Z (xd fxd) )
d

d

Length scale £, for dimension d determines how relevant the
dimension is

* As 7, gets larger, dimension d becomes less relevant
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ARD IN ACTION

I1=1.O, I2=1.O =10, 1,=3.0

J',-lll';ﬂ' \\\IIIIIIIII 777
- §(§%{"oo

0 \ “‘\\Q “\"\\‘ Y’

y \\\\\§\§&@”?‘P K

\;\\\I\\'\\\\!\f .’,‘r
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GP KERNELS

—— mean
W 95% I
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MODELING MULTIPLE TRENDS SIMULTANEQUSLY

CO, concentration

by month:

* Long-term rising

trend

* Seasonal changes
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MODELING MULTIPLE TRENDS SIMULTANEQUSLY

1.2

. +  observations 282
CO, concentration v
% 20
1.0 - ‘;:!:i
by month: &

38~ ‘»‘lf’}.‘"t
> Long-term rising | ’?,fp:f"‘

$
- 9¢ i
trend ,;{M
34 - ’d‘.(é}*.’

. T
Seasonal changes ég‘.(?t-fls'{
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MODELING MULTIPLE TRENDS SIMULTANEQUSLY

s observations

CO, concentration VT g%,

by month: |

~ Long-term rising 100"
trend

* Seasonal changes

i i i i 1 i
0 200 400 600 200 1000

V12
K(x,x) = 02€Xp< HX 2;(” )_l_ar%
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MODELING MULTIPLE TRENDS SIMULTANEQUSLY

s observations

CO, concentration %

by month:

~ Long-term rising o)
trend

* Seasonal changes

' ' ' ' ' '
0 200 400 600 800 1000

/ 2 / 2
X — X X — X
K(x,x) = 012 eXp | | + 022 cos| & | | + 0,%
27 p
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DON'T TRY THIS IN NC!
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KERNEL CONSTRUCTION

» Kernel grammar
» Adding, multiplying, exponentiating, etc.
» How to find the best “formula”?: AutoML
» Deep kernel learning

» Flexible, good for structured data
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DEEP KERNEL LEARNING

Kernel K(x, x")

'::',l | -‘ H — l‘:,— [:. H 3
l.‘ "D
o \ ::
CC(C)C(w0)0 4 \

CC(C)C(CCT)C(CCC)C=C
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DEEP KERNEL LEARNING

HALC
CHy
HqC— :
\‘ .l‘l —‘3C .I
g HaC=—, —CH;
o/ b ::'
CC{C)C(»0)O / \
l“' '..
H CHs

CC(C)C(CCT)C(CCC)C=C

Kernel K(x, x")

40
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BAYESIAN OPTIMIZATION

Expensive, blackbox optimization problems are common

> No known functional form

* Cost associated with querying the function

> No derivative information
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BAYESIAN OPTIMIZATION EXAMPLES

Hyperparameter tuning, user’s preference optimization, drug
discovery, etc.
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Abstract

We present a case study on applying Bayesian Optimization to a complex real-world
system; our challenge was to optimize chocolate chip cookies. The process was
a mixed-initiative system where both human chefs, human raters, and a machine
optimizer participated in 144 experiments. This process resulted in highly rated
cookies that deviated from expectations in some surprising ways — much less sugar
in California, and cayenne in Pittsburgh. Our experience highlights the importance
of incorporating domain expertise and the value of transfer learning approaches.

1 Introduction: The Challenge of Chocolate-Chip Cookies

Bayesian Optimization and black-box optimization are used extensively to optimize hyperparameters
in machine learning (e.g. [13, 11, 3]) but less so outside that area, and even less so in fields like the
culinary arts. We conjecture that the primary barrier to adoption is not technical, but rather cultural
and educational. Just as it took years for application communities to frame tasks as supervised
learning problems, it likewise takes time to recognize when black—box optimization can provide
value. We seek to accelerate this process of cross-disciplinary adoption by creating a challenge that
would help practitioners across disciplines recognize problems suitable for black-box optimization in
their own settings.

The challenge was to optimize the recipe for chocolate chip cookies. This task highlights key qualities
of problems well suited to Bayesian Optimization. The number of tunable parameters is relatively
small (e.g. amounts of flour, sugar, etc; see e.g. Table 2). The cost of each experimental iteration is
relatively high, requiring manual labor to mix and bake, then taste and report scores. And the problem
is familiar enough so that people outside the optimization community can savor the complexities of
the challenge and the resulting solutions.

In the remainder of this paper we will lay out a case study of our experience, including methods used,
complications that arose in practice, and a summation of lessons learned.
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