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…BECAUSE GAUSSIANITY IS PRESERVED IN MANY OPERATIONS

                p(y1, y2) = p ([y1
y2]) = N ([μ1

μ2], [Σ11 Σ12
Σ21 Σ22])

Marginalization: p(y1) = ∫y2

p(y1, y2) dy2 = N(μ1, Σ11)

‣ When we don’t care about the nuisance parameter y2
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…BECAUSE GAUSSIANITY IS PRESERVED IN MANY OPERATIONS

                p(y1, y2) = p ([y1
y2]) = N ([μ1

μ2], [Σ11 Σ12
Σ21 Σ22])

Summation: p(y1) = N(μ1, Σ11)

                       p(y2) = N(μ2, Σ22)

               p(y1 + y2) = N(μ1 + μ2, Σ11 + Σ22)
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…BECAUSE GAUSSIANITY IS PRESERVED IN MANY OPERATIONS

                p(y1, y2) = p ([y1
y2]) = N ([μ1

μ2], [Σ11 Σ12
Σ21 Σ22])

Conditioning: p(y1 ∣ y2) = N(μ′ 1, Σ′ 11)

                                      μ′ 1 = μ1 + Σ12 Σ−1
22 (y2 − μ2)

                                    Σ′ 11 = Σ11 − Σ12 Σ−1
22 Σ21

Applies to any multivariate Gaussian
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THE (KERNEL) REGRESSION MODEL

                    , where y = f(x) + ε = w⊤x + ε ε ∼ N(0,σ2
n)

Learning :              w w⊤x* = K(x*, X) K−1(X, X) y

What is the prediction for label  of test point ?y* x*

     p(y* ∣ x*, w) = N(w⊤x*, σ2
n) = N (K(x*, X) K−1(X, X) y, σ2

n)
Since label  is what we really care about, weight vector  is 
a nuisance parameter.

y* w
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MARGINALIZING OVER WEIGHT VECTORS

   p(y ∣ x, D) = ∫w
p(y, w ∣ x, D) dw = ∫w

p(y ∣ x, w) p(w ∣ D) dw

MLE: max p(D ∣ w)

MAP: max p(w ∣ D)

                  ∝ p(D ∣ w) p(w)

Others: low p(D ∣ w)

               or low p(w ∣ D)
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SIDE-STEPPING THE WEIGHT VECTORS

Training data  and test point D = {(xi, yi)}n
i=1 x*

                       p

y1
y2
⋮
yn
y*

∣ x1, x2, …, xn, x* = N(μ, Σ)

Conditioning on the training data :D

                                    p(y* ∣ x*, D) = N(μ*, σ2
*)
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CLOSED-FORM PREDICTIONS

Given training set  and test point :D = (X, y) x*

                                     ,p(y* ∣ x*, D) = N(μ*, σ2
*)

where

                μ* = K(x*, X) K−1(X, X) y

                σ2
* = K(x*, x*) − K(x*, X) K−1(X, X) K⊤(x*, X)

 is the covariance between  and .K(x, x′ ) x x′ 

‣ PSD.
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INTERPRETING THE PREDICTIONS

                                     ,p(y* ∣ x*, D) = N(μ*, σ2
*)

μ* = K(x*, X) K−1(X, X) y

σ2
* = K(x*, x*) − K(x*, X) K−1(X, X) K⊤(x*, X)

‣ : uncertainty never increasesσ2
* ≤ K(x*, x*)

‣ Uncertainty quantification

 can be anythingx*

‣ Distribution over functions
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: kernel regression!!



GP IN ACTION

                  RBF kernel:  K(x, x′ ) = exp (−
∥x − x′ ∥2

2 )

14GAUSSIAN PROCESSES



GP IN ACTION

                  RBF kernel:  K(x, x′ ) = exp (−
∥x − x′ ∥2

2 )

14GAUSSIAN PROCESSES



GP IN ACTION

                  RBF kernel:  K(x, x′ ) = exp (−
∥x − x′ ∥2

2 )

14GAUSSIAN PROCESSES



NOISY OBSERVATIONS

Each observation  follows a slightly different normal: 

      

y

p(y ∣ x) = N (y; μ(x), K(x, x) + σ2
n) K(X, X) → K(X, X) + σ2

n I

15GAUSSIAN PROCESSES



NOISY OBSERVATIONS

Each observation  follows a slightly different normal: 

      

y

p(y ∣ x) = N (y; μ(x), K(x, x) + σ2
n) K(X, X) → K(X, X) + σ2

n I

15GAUSSIAN PROCESSES



NOISY OBSERVATIONS

Each observation  follows a slightly different normal: 

      

y

p(y ∣ x) = N (y; μ(x), K(x, x) + σ2
n) K(X, X) → K(X, X) + σ2

n I

15GAUSSIAN PROCESSES



FORMAL DEFINITION OF A GP

GAUSSIAN PROCESSES 16



FORMAL DEFINITION OF A GP

Definition: A GP is a (potentially infinite) collection of RVs 

such that the joint distribution of every finite subset of RVs is 

multivariate Gaussian.
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GP HYPERPARAMETERS

                          K(x, x′ ) = σ2 exp (−
∥x − x′ ∥2

2ℓ )

Length scale  controls how “wiggly” the function isℓ

Output scale  controls the range of the functionσ2
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Given the hyperparameter vector , consider the negative 

 marginal likelihood:

θ

log

−log p(y ∣ θ) =
1
2

log det K(X, X) +
1
2

y⊤ K−1(X, X) y +
N
2

log(2π)
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FINDING THE BEST HYPERPARAMETERS

Given the hyperparameter vector , consider the negative 

 marginal likelihood:

θ

log

−log p(y ∣ θ) =
1
2

log det K(X, X) +
1
2

y⊤ K−1(X, X) y +
N
2

log(2π)

‣ Closed-form gradient w.r.t. elements in .θ
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ONE LENGTH SCALE FOR EACH DIMENSION

Automatic relevance determination (ARD) covariance 
function

                  K(x, x′ ) = σ2 exp (−
1
2 ∑

d

(xd − x′ d)2

ℓd )
Length scale  for dimension  determines how relevant the 
dimension is

ℓd d

‣ As  gets larger, dimension  becomes less relevantℓd d
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ARD IN ACTION
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GP KERNELS
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MODELING MULTIPLE TRENDS SIMULTANEOUSLY

 concentration 
by month: 

‣ Long-term rising 
trend 

‣ Seasonal changes

CO2
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 concentration 
by month: 

‣ Long-term rising 
trend 

‣ Seasonal changes
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K(x, x′ ) = σ2
1 exp (−

∥x − x′ ∥2

2ℓ ) + σ2
2 cos (π

∥x − x′ ∥2

p ) + σ2
n



DON’T TRY THIS IN NC!
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KERNEL CONSTRUCTION

▸ Kernel grammar

▸ Adding, multiplying, exponentiating, etc.

▸ How to find the best “formula”?: AutoML

▸ Deep kernel learning

▸ Flexible, good for structured data
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BAYESIAN OPTIMIZATION

Expensive, blackbox optimization problems are common

‣ No known functional form

‣ Cost associated with querying the function

‣ No derivative information
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BAYESIAN OPTIMIZATION EXAMPLES

Hyperparameter tuning, user’s preference optimization, drug 
discovery, etc.
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THE ACTIVE LEARNING LOOP
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TWENTY QUESTIONS
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