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Motivation
• Simulation-based methods to learn physics models requires perfectly 

annotated data and computationally expensive simulation
• Human error during annotation leads to error in physics models
• Expensive high dimensional simulation prohibits learning of physics models 

from fine temporal and spatial resolution data

Technical Approach
• Embedding physics modeling into end-to-end learning

• Uses a combination of 2 neural networks
• Embeds differential equations as fully differentiable 

neural network layers
• Exhibits superior performance in learning physics 

model of void evolution dynamics from data, 
• Efficient learning of sparse and decomposable PDE models 

using random projection
• Identifies a class of PDE models, having sparse 

temporal updates and decomposable spatial 
features

• Uses random projection to compress sparse 
features and temporal updates into low dimensional 
space, and conduct learning in the low dimensional 
space

• In experiment, can learn correct physics models 
from data compressed at 0.05% of original size

Broader Impact
• Designing sustainable materials for extreme environment

• Sustainable material design for extreme environments e., inside nuclear reactors, requires analysis of 
experimental data, which are noisy and high resolution. Our methods can efficiently analyze these 
data, and in essence accelerate the design process.

• Understanding properties of materials
• Broad understanding of the physical world can lead to fundamentally transformative technologies 

(e.g., semiconductors). Our method has the potential to accelerate scientific discovery in material 
science domain by streamlining the analysis process and reducing manual effort.

(a) Void shaped defects in Cu specimen at 350 C.
These defects are dynamic and can change size and
position and can also disappear as shown in figure.

(b) Grain growth in Cu/Fe 100 nm multilayer
upon annealing at different temperatures.
XTEM micrographs and EDS maps show the
microstructure evolution at different
temperatures. [1]

Real World Impact of Our Learning Methods
Many real-world systems (e.g., phase field model of grain growth in materials, 
material defect evolution in irradiated materials) are modeled with partial differential 
equations, and our method can greatly accelerate learning these models from data 
efficiently.

• Examples:
• Conservation laws
• Phase field models
• …

• Explains the hidden 
dynamics of the physical 
world

• Leads to innovation of new 
tech

• Examples:
• Sensor readings
• Videos
• Remote sensing 

(satellite images)
• ...

• High dimensional
• Noisy

Data
Physics Models

Need efficient 
methods to 
accelerate scientific 
discovery

Summary
We propose efficient methods to learn partial differential equation-based physics models from
data. Our methods are robust against human annotation error and can greatly reduce the cost of
high dimensional simulation associated with learning. Our proposed techniques can greatly
accelerate scientific discovery in the domain of material science, and lead to the design of more
sustainable materials for high temperature high irradiation environments such as that inside of a
nuclear reactor.


