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➢ Materials design and drug discovery is a challenging problem 

because (1) the design space is huge, and (2) measuring a molecule's 

functionality in a physical experiment is time-consuming and expensive.

➢Bayesian optimization (BO) [1], a sequential experimental design strategy 

for optimizing expensive-to-evaluate functions, enables efficient discovery of 

molecules with desirable chemical properties.

➢ In chemical design problems, domain experts often use computational 

chemistry models to study the molecular mechanisms underlying a 

chemical property of interest. Such models provide important additional 

information not available from physical experiments but are ignored by 

standard BO algorithms.

➢We show that BO of function networks (BOFN) [2] can combine 

information from computational chemistry models and physical experiments 

to improve molecular discovery. However, BOFN is inefficient for molecular 

discovery when used directly because it requires that physical experiments 

be run on all molecules evaluated via computational chemistry.

➢Therefore, we propose BOFN with partial evaluations (pBOFN), which 

supports efficient molecular discovery by allowing physical experiments to 

be skipped for molecules whose computational chemistry calculations lack 

promise, reducing the number of expensive physical experiments.

➢ We test the performance of the proposed pBOFN framework on the FreeSolv

dataset [3]: a curated database containing both calculated and experimental free 

energies of 642 small molecules.

➢ Experiment setup

➢ Results: pBOFN outperformed all baseline algorithms in terms of solution quality 

and number of physical experiments required. This is because it leverages 

computational values that are highly predictive of the experimental free energies.
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➢ We proposed a novel Bayesian Optimization framework for molecular design that 

uses computational chemistry models and physical experiments together 

to discover promising molecules faster than using physical experiments alone.

➢ We tested the algorithm on a chemistry dataset (FreeSolv).

➢ The results show that the proposed algorithm provides a better solution using 

fewer physical experiments than existing methods.

➢ Future work includes incorporating heterogeneous costs for different information 

sources and applying the framework to a broader range of applications.

Other Applications
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▪ Goal: maximizing experimental free energy

▪ We use a variational autoencoder (VAE) to represent molecules in 

a continuous space

▪ Baseline methods: random sampling (RAND), BO, BOFN and pBOFN

▪ We use 5 randomly selected initial observations and 20 iterations

▪ In each iteration, pBOFN selects 20 molecules for which to calculate 

computational free energies and selects only one most-promising 

candidate at which to evaluate the experimental free energy.

▪ 10 replications

➢ Bayesian optimization is an 

approach to optimizing objective 

functions that take a long time to 

evaluate.

➢ It often uses a Gaussian process

(GP) statistical model. In BOFN, 

we use the composition of a 

network of GPs.

➢ BO computes the value of 

information (i.e., acquisition 

function), which quantifies the 

value of evaluating the objective at 

a given point.

➢ BO recommends running the next 

experiment at the point with the 

highest value of information.

➢Our primary application, part of a Multi-University Research Initiative 

supported by the Air Force and led by UCSD, is discovery of peptides that 

inhibit ice growth.

➢Proteins that inhibit ice growth (recrystallization) appear in nature, e.g., in 

fish that live in the Arctic and Antarctic.

➢We wish to improve on these proteins for use in aerospace (to prevent ice 

formation on aircraft) and for cryopreservation of biological tissue.

➢There are also applications more broadly in molecular discovery, inverse 

problems / model calibration, and reinforcement learning.
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