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Introduction

» Materials design and drug discovery is a challenging problem
because (1) the design space Is huge, and (2) measuring a molecule's
functionality in a physical experiment is time-consuming and expensive.

» Bayesian optimization (BO) [1], a sequential experimental design strategy
for optimizing expensive-to-evaluate functions, enables efficient discovery of
molecules with desirable chemical properties.

» In chemical design problems, domain experts often use computational
chemistry models to study the molecular mechanisms underlying a
chemical property of interest. Such models provide important additional
Information not available from physical experiments but are ignored by
standard BO algorithms.

» We show that BO of function networks (BOFN) [2] can combine
iInformation from computational chemistry models and physical experiments
to improve molecular discovery. However, BOFN is inefficient for molecular
discovery when used directly because it requires that physical experiments
be run on all molecules evaluated via computational chemistry. 1

» Therefore, we propose BOFN with partial evaluations (pBOFN), which
supports efficient molecular discovery by allowing physical experiments to
be skipped for molecules whose computational chemistry calculations lack
promise, reducing the number of expensive physical experiments.

Applications

Antifreeze Protein (AFP) Discovery
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» Our primary application, part of a Multi-University Research Initiative
supported by the Air Force and led by UCSD, is discovery of peptides that
Inhibit ice growth.
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» Proteins that inhibit ice growth (recrystallization) appear in nature, e.g., in
fish that live in the Arctic and Antarctic.

» We wish to improve on these proteins for use in aerospace (to prevent ice
formation on aircraft) and for cryopreservation of biological tissue.

» There are also applications more broadly in molecular discovery, inverse
problems / model calibration, and reinforcement learning.
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Other Applications

Run experiments on the
set of selected candidates

Molecule property
optimization

Model calibration Robot movement
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e.g. peptide/molecule

Simple Function Network in Materials Design

Computational model f
e.g. computational chemistry
simulation, approximate
mathematical model

Physical experiment g
e.g. chemical experiment

Bayesian optimization is an
approach to optimizing objective
- functions that take a long time to
~ , \ evaluate.

- T~ It often uses a Gaussian process
IR T (GP) statistical model. In BOFN,
o T Tt el __ - we use the composition of a

network of GPs.
BO computes the value of

Information (i.e., acquisition
function), which quantifies the

a given point.

BO recommends running the next
experiment at the point with the
highest value of information.
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Workflow for pPBOFN
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Run computational
chemistry simulation on the
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Preliminary Results

» We test the performance of the proposed pBOFN framework on the FreeSolv
dataset [3]: a curated database containing both calculated and experimental free
energies of 642 small molecules.

» Experiment setup

= Goal: maximizing experimental free energy

= We use a variational autoencoder (VAE) to represent molecules in
a continuous space

= Baseline methods: random sampling (RAND), BO, BOFN and pBOFN

» Weuse 5 randomly selected Initial observations and 20 iterations

= In each iteration, pPBOFN selects 20 molecules for which to calculate
computational free energies and selects only one most-promising
candidate at which to evaluate the experimental free energy.

= 10 replications

» Results: pPBOFN outperformed all baseline algorithms in terms of solution quality
and number of physical experiments required. This is because it leverages
computational values that are highly predictive of the experimental free energies.
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Conclusion and Future Work

» We proposed a novel Bayesian Optimization framework for molecular design that
uses computational chemistry models and physical experiments together
to discover promising molecules faster than using physical experiments alone.

» We tested the algorithm on a chemistry dataset (FreeSolv).

» The results show that the proposed algorithm provides a better solution using
fewer physical experiments than existing methods.

» Future work includes incorporating heterogeneous costs for different information
sources and applying the framework to a broader range of applications.
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