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A lot of technological advances depend on next—generation materials, such as graphene, CW-laser patterning
which enables better electronics, to name but one example. Manufacturing such materials 1s often
difficult, in particular, producing graphene at scale 1s an open problem. We apply state-of-the-art
machine learning to optimize the production of laser—-induced graphene, an established manufacturing
method that has shown great promise. We demonstrate improvements over previous results in terms of
the quality of the produced graphene from a variety of different precursor materials. We use Bayesian
model-based optimization to quickly improve outcomes based on little initial data and show the
robustness of our approach to different experimental conditions, tackling a small-data problem in
contrast to the more common big-data applications of machine learning. We analyze the learned
surrogate models with respect to the quality of their predictions and learned relationships

that may be of interest to domain experts and improve our understanding

of the processes governing laser—-induced graphene production.
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Optimization of electrical properties
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Structural characteristics of LIG (a) before and (b) after init

random

patterning of GO. D 1s attributed to defects. G to in-plane

vibrations of sp2 carbon atoms. 2D to stacking order of

Batch optimization of electrical property
carbon planes. D1 to amorphous carbon. of patterned LIG, lower is better.

On the left, the distribution of resistance

Single-step Bayesian Optimization (BO) 'ﬂﬂ'the:uuiial1na%nthQata:E;shown.
Each batch has 14 lines (inset); each boxplot
BO loop represents one batch. On the right, the
Require: Search space A, cost function ¢, acquisition function u, pre- distribution of measured resistances for all
dictive model ¢, maximal number of function evaluations 7’ configu rations that the MBO explo red.

Result : Best configuration A (according to D or ¢)
1 Initialize data D) with initial observations

2 fort=1tol"do

3 | Fit predictive model &% on DE™H Correlation between structural and
4 Select next query point: A*) € arg Maxy u(X; DED &)

5

6

Query c(A®) electrical properties

| Update data: DO « D=1 U {(AW (A1)} variable correlation p—value

GOQ I(D) 0.744 <= le-4
.
(l) /S POS(D) -0.592 <= le-4
/ | ) Width(D) 0.505 <= le-3
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correlate well with resistance; 1instead, reducing
lteration amorphous carbon (D1) does, as evident from the

table results. Homogeneity of the structures seem

Single-step optimization of the structural quality to also play a role in improving electrical

of LIG on various precursors (i) GO on quartz and

(ii) polyimide; higher is better. Boxplot shows distribution Property, 5“9965t1”9 that rich data 1”99t may

of initial training data. Inset: (Left) Comparison of improve predictions. Future work would include
various model performances (right) Scanning electron optimizing a balance between measurement cost and
micrograph of patterned LIG using (a),(e) random and prediction quality.
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