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Optimization of laser-induced graphene manufacturing
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A lot of technological advances depend on next-generation materials, such as graphene,
which enables better electronics, to name but one example. Manufacturing such materials is often
difficult, in particular, producing graphene at scale is an open problem. We apply state-of-the-art
machine learning to optimize the production of laser-induced graphene, an established manufacturing
method that has shown great promise. We demonstrate improvements over previous results in terms of
the quality of the produced graphene from a variety of different precursor materials. We use Bayesian
model-based optimization to quickly improve outcomes based on little initial data and show the
robustness of our approach to different experimental conditions, tackling a small-data problem in
contrast to the more common big-data applications of machine learning. We analyze the learned
surrogate models with respect to the quality of their predictions and learned relationships
that may be of interest to domain experts and improve our understanding
of the processes governing laser-induced graphene production.

Exploration vs Exploitation Closed-loop SetupOptimization of structural properties

Single-step Bayesian Optimization (BO)

1D Carbon Nanotube

0D Fullerene 2D Graphene

Graphene oxide (GO)

3D Graphite

Amorphous Carbon

Visualizing how exploration
escapes local minima to find
the global minima

Comparing exploitation,
exploration and trade-offs
in a partial dependence plot

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Structural characteristics of LIG (a) before and (b) after
patterning of GO. D is attributed to defects. G to in-plane
vibrations of sp2 carbon atoms. 2D to stacking order of
carbon planes. D1 to amorphous carbon.

(b)(a)

2D

G
D

D1

Raman G/D

Single-step optimization of the structural quality 
of LIG on various precursors (i) GO on quartz and
(ii) polyimide; higher is better. Boxplot shows distribution
of initial training data. Inset: (Left) Comparison of
various model performances (right) Scanning electron
micrograph of patterned LIG using (a),(e) random and
(b),(f) BO parameters
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variable correlation p-value

I(D)
Pos(D)
Width(D)
I(D1)
I(2D)/I(G)
Width(D1)
I(G)

 0.744
-0.592
 0.505
 0.379
 0.348
-0.206
-0.176

<= 1e-4
<= 1e-4
<= 1e-3
<= 1e-3
<= 1e-3
<= 5e-2
<= 5e-2

Optimization of electrical properties

Batch optimization of electrical property
of patterned LIG, lower is better.
On the left, the distribution of resistance
for the initial training data is shown.
Each batch has 14 lines (inset); each boxplot
represents one batch. On the right,the
distribution of measured resistances for all
configurations that the MBO explored.

Morphology and Raman 2D map of LIG with (a) high
and (b) low electrical resistance. Common 
structures that are characteristic of high-
quality graphene (G/D and 2D/G) do not
correlate well with resistance; instead, reducing
amorphous carbon (D1) does, as evident from the
table results. Homogeneity of the structures seem
to also play a role in improving electrical
property, suggesting that rich data input may
improve predictions. Future work would include
optimizing a balance between measurement cost and
prediction quality.
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