CSE 517 — MACHINE LEARNING QUAN NGUYEN

BAYESIAN OPTIMIZATION

BLACK-BOX OPTIMIZATION

BLACK-BOX OPTIMIZATION

Want to computationally solve for

$$x^* = \arg\max_D f(x)$$

BLACK-BOX OPTIMIZATION

Want to computationally solve for

$$x^* = \arg\max_D f(x)$$

Challenges: The objective function f

BLACK-BOX OPTIMIZATION

Want to computationally solve for

$$x^* = \arg\max_D f(x)$$

Challenges: The objective function f

is expensive to evaluate (money, time, safety conditions, etc.)

BLACK-BOX OPTIMIZATION

Want to computationally solve for

$$x^* = \arg \max_D f(x)$$

Challenges: The objective function f

- is expensive to evaluate (money, time, safety conditions, etc.)
- has no analytical form (e.g., $f(x) \neq x^2 + x 1$)

BLACK-BOX OPTIMIZATION

Want to computationally solve for

$$x^* = \arg \max_D f(x)$$

Challenges: The objective function f

- is expensive to evaluate (money, time, safety conditions, etc.)
- has no analytical form (e.g., $f(x) \neq x^2 + x 1$)
- has **no gradient** information (cannot run gradient descent, L-BFGS, etc.)

Install User Guide API Examples Community More

Prev

Up

Next

scikit-learn 1.0.2

Other versions

Please **cite us** if you use the software.

API Reference

sklearn.base: Base classes and

utility functions

sklearn.calibration: Probability

Hyper-parameter optimizers

model_selection.GridSearchCV(estimator, ...) Exhaustive search over specified parameter values for an estimator.

model_selection.HalvingGridSearchCV(...
[, ...]) Search over specified parameter values with successive halving.

model_selection.ParameterGrid(param_grid) Grid of parameters with a discrete number of values for each.

model_selection.ParameterSampler(...[, ...]) Generator on parameters sampled from given distributions.

model_selection.RandomizedSearchCV(...
[, ...])
Randomized search on hyper parameters.

model_selection.HalvingRandomSearchCV(... Randomized search on hyper parameters. [, ...])

Bayesian Optimization for a Better Dessert

Greg Kochanski, Daniel Golovin, John Karro, Benjamin Solnik, Subhodeep Moitra, and D. Sculley

{gpk, dgg, karro, bsolnik, smoitra, dsculley}@google.com; Google Brain Team

Abstract

We present a case study on applying Bayesian Optimization to a complex real-world system; our challenge was to optimize chocolate chip cookies. The process was a mixed-initiative system where both human chefs, human raters, and a machine optimizer participated in 144 experiments. This process resulted in highly rated cookies that deviated from expectations in some surprising ways – much less sugar in California, and cayenne in Pittsburgh. Our experience highlights the importance of incorporating domain expertise and the value of transfer learning approaches.

THE ACTIVE LEARNING LOOP

TWENTY QUESTIONS FOR OPTIMIZATION

TO BRING OR NOT TO BRING AN UMBRELLA

Given: chance of rain (outcome y) is equal to p

Question: whether or not to bring an umbrella to school (action a)

TO BRING OR NOT TO BRING AN UMBRELLA

Given: chance of rain (outcome y) is equal to p

Question: whether or not to bring an umbrella to school (action a)

	rain	no rain
umbrella	2	1
no umbrella	10	0

avg. cost of a_i

$$\mathbb{E}_{y_j} \left[\text{cost of } (a_i, y_j) \right]$$

-> pick the
lowest-cost action

	rain	no rain
umbrella	2	1
no umbrella	10	0

umbrella

	rain	no rain
umbrella	2	1
no umbrella	10	0

	rain	no rain
umbrella	2	1
no umbrella	10	0

	rain	no rain
umbrella	2	1
no umbrella	10	0

no umbrella

	rain	no rain
umbrella	2	1
no umbrella	10	0

	rain	no rain
umbrella	2	1
no umbrella	10	0

DECISION-MAKING IS CONTEXT-SPECIFIC

(Exp.) Costs: p(2) + (1 - p)(1) vs. p(10)

```
(Exp.) Costs: p(2) + (1 - p)(1) vs. p(10)
```

If p = 0.9, you should bring an umbrella

```
(Exp.) Costs: p(2) + (1 - p)(1) vs. p(10)
```

- If p = 0.9, you **should** bring an umbrella
- If p = 0.1, you should not bring an umbrella

(Exp.) Costs:
$$p(2) + (1 - p)(1)$$
 vs. $p(10)$

- If p = 0.9, you should bring an umbrella
- If p = 0.1, you should not bring an umbrella

	rain	no rain
umbrella	2	1
no umbrella	1000	0

(Exp.) Costs:
$$p(2) + (1 - p)(1)$$
 vs. $p(10)$

- If p = 0.9, you should bring an umbrella
- If p = 0.1, you should not bring an umbrella

	rain	no rain
umbrella	1	1
no umbrella	0	0

COMPONENTS TO PROBABILISTIC DECISION-MAKING

Probabilistic predictive model

Decision-making policy

COMPONENTS TO PROBABILISTIC DECISION-MAKING

Probabilistic predictive model

Decision-making policy

COMPONENTS TO PROBABILISTIC DECISION-MAKING

Decision-making policy

COMPONENTS TO PROBABILISTIC DECISION-MAKING

Infinite number of actions

- Infinite number of actions
 - Which point x to query

- Infinite number of actions
 - Which point x to query
 - \blacktriangleright Search space is the domain D

- Infinite number of actions
 - Which point x to query
 - lacksquare Search space is the domain D
- Infinite number of possible outcomes

- Infinite number of actions
 - Which point x to query
 - Search space is the domain D
- Infinite number of possible outcomes
 - The label y of the query x

- Infinite number of actions
 - Which point x to query
 - \triangleright Search space is the domain D
- Infinite number of possible outcomes
 - The label y of the query x
 - Follows a normal distribution

- Infinite number of actions
 - Which point x to query
 - \blacktriangleright Search space is the domain D
- Infinite number of possible outcomes
 - \blacktriangleright The label y of the query x
 - Follows a normal distribution

DEFINING UTILITY IN BAYESIAN OPTIMIZATION

DEFINING UTILITY IN BAYESIAN OPTIMIZATION

Goal: finding the function maximizer $x^* = \arg \max_D f(x)$

DEFINING UTILITY IN BAYESIAN OPTIMIZATION

Goal: finding the function maximizer $x^* = \arg \max_D f(x)$

Care about: uncovering a large f(x) value

DEFINING UTILITY IN BAYESIAN OPTIMIZATION

Goal: finding the function maximizer $x^* = \arg \max_D f(x)$

Care about: uncovering a large f(x) value

Concrete utility: improving from the best point seen so far (incumbent)

WHETHER TO IMPROVE FROM THE INCUMBENT

Utility: 1 if improve from the incumbent, 0 otherwise

WHETHER TO IMPROVE FROM THE INCUMBENT

Utility: 1 if improve from the incumbent, 0 otherwise

	• • •	-100	-99.9999	• • •	1.6054	1.6055	• • •
0	• • •	0	0	• • •	0	1	• • •
0.001	• • •	0	0	• • •	0	1	• • •
0.0002	• • •	0	0	• • •	0	1	• • •
	• • •	• • •	• • •	• • •	• • •	• • •	• • •

FANTASIZING ABOUT IMPROVEMENT

FANTASIZING ABOUT IMPROVEMENT

FANTASIZING ABOUT IMPROVEMENT

FANTASIZING ABOUT IMPROVEMENT

avg. utility of x

$$\Pr\left(y > \text{incumbent}\right) = \Phi\left(\frac{\mu - \text{incumbent}}{\sigma}\right)$$

$$\Pr\left(y > \text{incumbent}\right) = \Phi\left(\frac{\mu - \text{incumbent}}{\sigma}\right)$$

$$\Pr\left(y > \text{incumbent}\right) = \Phi\left(\frac{\mu - \text{incumbent}}{\sigma}\right)$$

$$\Pr\left(y > \text{incumbent}\right) = \Phi\left(\frac{\mu - \text{incumbent}}{\sigma}\right)$$

$$\Pr\left(y > \text{incumbent}\right) = \Phi\left(\frac{\mu - \text{incumbent}}{\sigma}\right)$$

$$\Pr\left(y > \text{incumbent}\right) = \Phi\left(\frac{\mu - \text{incumbent}}{\sigma}\right)$$

THE ACTIVE LEARNING LOOP WITH PROBABILITY OF IMPROVEMENT

THE ACTIVE LEARNING LOOP WITH PROBABILITY OF IMPROVEMENT

ENCOURAGING EXPLORATION

ENCOURAGING EXPLORATION

Simple improvement encourages exploitation.

ENCOURAGING EXPLORATION

Simple improvement encourages exploitation.

Solution:

ENCOURAGING EXPLORATION

Simple improvement encourages exploitation.

Solution:

1. Set a stricter definition of "improvement".

Simple improvement encourages exploitation.

Solution:

 Set a stricter definition of "improvement".

• • •	1.61	1.62	• • •	$1.61 + \epsilon$	• • •
• • •	0	0	• • •	1	• • •
• • •	0	0	• • •	1	• • •
• • •	0	0	• • •	1	• • •
			• • •	• • •	• • •

Simple improvement encourages exploitation.

Solution:

1. Set a stricter definition of "improvement".

Simple improvement encourages exploitation.

Solution:

1. Set a stricter definition of "improvement".

Simple improvement encourages exploitation.

Solution:

- 1. Set a stricter definition of "improvement".
- 2. Redefine utility

HOW MUCH TO IMPROVE FROM THE INCUMBENT

Utility: how much the incumbent improves

HOW MUCH TO IMPROVE FROM THE INCUMBENT

Utility: how much the incumbent improves

	• • •	1.6054	1.6055	1.6056	• • •	2	• • •
0	• • •	0	0.001	0.0002	• • •	0.3946	• • •
0.001	• • •	0	0.001	0.0002	• • •	0.3946	• • •
0.0002	• • •	0	0.001	0.0002	• • •	0.3946	• • •
• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •

THE ACTIVE LEARNING LOOP WITH EXPECTED IMPROVEMENT

THE ACTIVE LEARNING LOOP WITH EXPECTED IMPROVEMENT

OTHER BAYESOPT POLICIES

Upper confidence bound uses the

upper credible intervals

 Upper confidence bound uses the upper credible intervals

- Upper confidence bound uses the upper credible intervals
- Thompson sampling maximizes a sample from the GP

- Upper confidence bound uses the upper credible intervals
- Thompson sampling maximizes a sample from the GP

- Upper confidence bound uses the upper credible intervals
- Thompson sampling maximizes a sample from the GP

- Upper confidence bound uses the upper credible intervals
- Thompson sampling maximizes a sample from the GP

- Upper confidence bound uses the upper credible intervals
- Thompson sampling maximizes a sample from the GP
- Entropy search maximizes informationgain

- Upper confidence bound uses the upper credible intervals
- Thompson sampling maximizes a sample from the GP
- Entropy search maximizes informationgain

NONMYOPIA IN BAYESIAN OPTIMIZATION

NONMYOPIA IN BAYESIAN OPTIMIZATION

