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BLACK-BOX OPTIMIZATION

Want to computationally solve for

x* = arg maxp, f(x)
Challenges: The objective function f
> is expensive to evaluate (money, time, safety conditions, etc.)
> has no analytical form (e.g., f(x) # x* +x — 1)

> has no gradient information (cannot run gradient descent, L-BFGS, etc.)
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Bayesian Optimization for a Better Dessert

Greg Kochanski, Daniel Golovin, John Karro, Benjamin Solnik,

Subhodeep Moitra, and D. Sculley
{gpk, dgg, karro, bsolnik, smoitra, dsculley}@google.com; Google Brain Team

Abstract

We present a case study on applying Bayesian Optimization to a complex real-world
system; our challenge was to optimize chocolate chip cookies. The process was
a mixed-initiative system where both human chefs, human raters, and a machine
optimizer participated in 144 experiments. This process resulted in highly rated
cookies that deviated from expectations in some surprising ways — much less sugar
in California, and cayenne in Pittsburgh. Our experience highlights the importance
of incorporating domain expertise and the value of transfer learning approaches.
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(Exp. ) Costs: p(2) + (1 — p)(1) vs.
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> 1t p =0.9, you should bring an
umbrella

> It p = 0.1, you should not
bring an umbrella
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DEFINING UTILITY IN BAYESIAN OPTIMIZATION

Goal: finding the function maximizer x* = arg max,, f(x)

Care about: uncovering a large f(x) value

Concrete utility: improving from the best point seen so far (incumbent)
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WHETHER TO IMPROVE FROM THE INCUMBENT

Utility: 1 if improve from the incumbent, 0 otherwise

-100  -99.9999 1.6054 1.6055
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0.0002 0 0 0 1
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FANTASIZING ABOUT IMPROVEMENT
avg. utility of x

E, [I{y; > incumbent} |

= Pr (y > incumbent)

Pi
X @— utility [{y; > incumbent}




BAYESIAN OPTIMIZATION

20

GAUSSIANITY IS AMENABLE TO IMPROVEMENT-RELATED CALCULATIONS

19

18 -

17 -

16 -

15 -

14 -

13 -

12 -

] ] . ] ]

. . ] ’ .

3 : 3 :

. . . . -

i e e e S s D S P = T D S S D S D P S D S S D D D S D S S P S D S S S S D S S S S S S S eus e x e'va ons .

3 3 :

. . .

] ] 2

: : : -

. . . .




BAYESIAN OPTIMIZATION

20

GAUSSIANITY IS AMENABLE TO IMPROVEMENT-RELATED CALCULATIONS

19 -

18 -

17 -

16 -

15 -

14 -

13 -

12 -




BAYESIAN OPTIMIZATION

20

GAUSSIANITY IS AMENABLE TO IMPROVEMENT-RELATED CALCULATIONS

19 -

18 -

17 -

16 -

15 -

14 -

13 -

12 -




BAYESIAN OPTIMIZATION

20

GAUSSIANITY IS AMENABLE TO IMPROVEMENT-RELATED CALCULATIONS

19 -

18 -

17 -

16 -

15 -

14 -

13 -

12 -




BAYESIAN OPTIMIZATION

20

GAUSSIANITY IS AMENABLE TO IMPROVEMENT-RELATED CALCULATIONS

19 -

18 -

17 -

16 -

15 -

14 -

13 -

12 -

--------------------------------------------------------

————— - — — - — - —

.
:
.
]
»
|
3
»
|
3
.
|
3
.
2
:
.
2
:
.
]
:
.
]
.
|
:
.
,
3
-
|
:
L
2
:
.
2
:
.
]
:
,
]
.
,
3
»
.
:
»
2
:
.
2
:
.
2
:
,
2
:
NI T
——
’

..............................................................

.........................................................

...................................................

............................................

...................................................................

..............................................................

- - —— - — - — - . -

.....................................................

B e T

15 16

17

18 19



BAYESIAN OPTIMIZATION

20

19 -

18 -

17 -

13 -

12 -

GAUSSIANITY IS AMENABLE TO IMPROVEMENT-RELATED C

7 -

ALCULATIONS

...............................................................

.........................................................

.............................................................

........................................................

)
3
A S p—
T SR SN SRS SRR SRR WS SRS S —
I

.....................................................................................................

....................................................................

...............................................................

...........................................................

.....................................................

.............................................

15 16

17

18 19



BAYESIAN OPTIMIZATION

20

GAUSSIANITY IS AMENABLE TO IMPROVEMENT-RELATED CALCULATIONS

7=

.............................................................

...............................................................

..............................................................

.............................................................

........................................................

...................................................

...........................................

I
6

.....................................................................................................

error bar

....................................................................

...............................................................

...........................................................

.....................................................

.............................................

O

. 1 — incumbent
Pr (y > incumbent) = @ (—)



BAYESIAN OPTIMIZATION

20

GAUSSIANITY IS AMENABLE TO IMPROVEMENT-RELATED CALCULATIONS

. 1 — incumbent
Pr (y > incumbent) = @ (—)

O



BAYESIAN OPTIMIZATION

20

12 -

B e e

rdersmrsmsmmrsmmsmnsmrsmesmesbrontinsrinrsmrsmssnsasmsnnsnohecen

.....................................................

............................................

mrsmramra s m .- —-——-— - .- —— - -

cmssbrensesrsnnssnscmssmsnmsnncn e cen cen e meenee neenee e ede o -

. - —— —— - — - . - - - - — -

- ———— - — — - — - - —— -

. .-

10 12 14 16

— incumbent

Pr (y > incumbent) = ('M
%

18 20 22

)



BAYESIAN OPTIMIZATION

GAUSSIANITY IS AMENABLE TO IMPROVEMENT-RELATED CALCULATIONS

— pdf

- = autoff
| %X observations
0 improvement

25_%MMMWmmmm@mmmmmMmmguwmmm
18 - | |

20 b
17 - |

16 - L R

15 - - | | |
| 1 S

ns @ R — B ;

13 -

00-

T S S B

10 12 14 16 18 20 22

. 1 — incumbent
Pr (y > mc:umbent) = (—)
%



BAYESIAN OPTIMIZATION

20

GAUSSIANITY IS AMENABLE TO IMPROVEMENT-RELATED CALCULATIONS

#m probability of improvement

-4

. 1 — incumbent
Pr (y > mc:umbent) = (—)
%



BAYESIAN OPTIMIZATION

GAUSSIANITY IS AMENABLE TO IMPROVEMENT-RELATED CALCULATIONS

#m probability of improvement

-4

. 1 — incumbent
Pr (y > mc:umbent) = (—)
%



BAYESIAN OPTIMIZATION

THE ACTIVE LEARNING LOOP WITH PROBABILITY OF IMPROVEMENT

learn a mode/

/>

labeled
training set

machine learning
model \

unlabeled pool
U

select quernes

@K L "i,

oracle (e.g., human annotator)

21



BAYESIAN OPTIMIZATION

THE ACTIVE LEARNING LOOP WITH PROBABILITY OF IMPROVEMENT

, , —_— objectivé | ,
6 [EiTENUR A ________ x OIS ATIOIIE R L PO PR )
| | —— mean | |

95% CI - | |

predictive
N

o
~
w

o
w
o

o
N
()

acquisition score

o
o
o




BAYESIAN OPTIMIZATION

22

ENCOURAGING EXPLORATION



BAYESIAN OPTIMIZATION

22

ENCOURAGING EXPLORATION

Simple improvement encourages
exploitation.



BAYESIAN OPTIMIZATION

22

ENCOURAGING EXPLORATION

Simple improvement encourages
exploitation.

Solution:



BAYESIAN OPTIMIZATION

22

ENCOURAGING EXPLORATION

Simple improvement encourages
exploitation.

Solution:

1. Set a stricter definition of
“Improvement’.



BAYESIAN OPTIMIZATION

22

ENCOURAGING EXPLORATION

Simple improvement encourages
exploitation.

Solution:

1. Set a stricter definition of
“Improvement’.
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Utility: how much the incumbent improves

1.6054 1.6055 1.6056 2
0 0 0.00017 0.0002 0.3946
0.0001 0 0.00017 0.0002 0.3946
0.0002 0 0.00017 0.0002 0.3946




BAYESIAN OPTIMIZATION

25

FANTASIZING ABOUT IMPROVEMENT




BAYESIAN OPTIMIZATION

25

FANTASIZING ABOUT IMPROVEMENT

X




BAYESIAN OPTIMIZATION 25

FANTASIZING ABOUT IMPROVEMENT

Pi - -
X @— utility max ((), V; — mcumbent)
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FANTASIZING ABOUT IMPROVEMENT

avg. utility of x

= [max ((), y; — incumbent)]

Pi - -
X @— utility max ((), V; — mcumbent)
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» Upper confidence bound uses the

upper credible intervals

» Thompson sampling maximizes a

sample from the GP

» Entropy search maximizes information
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NONMYOPIA IN BAYESIAN OPTIMIZATION

(a) 1nitial state (b) EI iteration 1

BINOCULARS for Efficient, Nonmyopic Sequential Experimental Design, Jiang et al., ICML 2020

(c) EI iteration 2
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NONMYOPIA IN BAYESIAN OPTIMIZATION

w®

(a) 1nitial state (b) EI iteration 1 (c) EI iteration 2
(e) 2-EI iteration 1 (f) 2-EI iteration 2

BINOCULARS for Efficient, Nonmyopic Sequential Experimental Design, Jiang et al., ICML 2020



