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Challenges: The objective function f

‣ is expensive to evaluate (money, time, safety conditions, etc.)

‣ has no analytical form (e.g., )f(x) ≠ x2 + x − 1

‣ has no gradient information (cannot run gradient descent, L-BFGS, etc.)
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Goal: finding the function maximizer x* = arg maxD f(x)

Care about: uncovering a large  valuef(x)

Concrete utility: improving from the best point seen so far (incumbent)

17BAYESIAN OPTIMIZATION



WHETHER TO IMPROVE FROM THE INCUMBENT

Utility: 1 if improve from the incumbent, 0 otherwise

BAYESIAN OPTIMIZATION 18



WHETHER TO IMPROVE FROM THE INCUMBENT

Utility: 1 if improve from the incumbent, 0 otherwise

BAYESIAN OPTIMIZATION 18

… -100 -99.9999 … 1.6054 1.6055 …

0 … 0 0 … 0 1 …

0.0001 … 0 0 … 0 1 …

0.0002 … 0 0 … 0 1 …

… … … … … … … …



BAYESIAN OPTIMIZATION

FANTASIZING ABOUT IMPROVEMENT

19

x



BAYESIAN OPTIMIZATION

FANTASIZING ABOUT IMPROVEMENT

19

x yi
pi

…

…



BAYESIAN OPTIMIZATION

FANTASIZING ABOUT IMPROVEMENT

19

x yi utility 𝕀{yi > incumbent}
pi

…

…



BAYESIAN OPTIMIZATION

FANTASIZING ABOUT IMPROVEMENT

19
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…

…

avg. utility of  

 

x

𝔼yj [𝕀{yi > incumbent}]
= Pr (y > incumbent)
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Simple improvement encourages 
exploitation.

Solution:

1. Set a stricter definition of 
“improvement”.

2. Redefine utility
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